
  

 

 

Asynchronous Deep Q-network in Continuous Environment Based on 
Prioritized Experience Replay 

Hongda Liua, Hanqi Zhangb and Linying Gongc 
College of Computer Science and Technology, Jilin University, Changchun 130012, China 

aliuhd2116@mails.jlu.edu.cn, bzhanghq2116@mails.jlu.edu.cn, cgongly2116@mails.jlu.edu.cn 

Keywords: Deep Q-network, Continuous Environment, Prioritized Experience Replay, Asynchronous 

Abstract: Deep Q-network is a classical algorithm of reinforce learning, which is widely used and 
has many variants. The research content of this paper is to optimize and integrate some variant 
algorithms so that it has the advantage of running in the continuous environment, and improve the 
learning efficiency by Prioritized Experience Replay and multiple agents' asynchronous parallel 
method, and establish the asynchronous Deep Q-network framework based on priority Experience 
Replay in the continuous environment. This paper uses some games in the Atari 2600 domain to test 
our algorithm framework, which achieved good results, improved stability, convergence speed and 
improved performance. 

1. Introduction 
Deep reinforcement learning is one of the key research directions in the field of artificial 

intelligence. It has strong versatility and can be applied to many application fields, from end-to-end 
game control, intelligent robot control, facial recognition, and even natural language processing, 
those have a combination with deep learning. In recent years, there have been many research results, 
among which the Deep Q-network algorithm proposed by Googles Deep Mind team at NIPS in 2013 
combines deep learning with reinforcement learning to achieve a new algorithm for end-to-end 
learning algorithm from perception to action [1]. Later, many studies refer to this algorithm and 
propose new improvement strategies to improve the learning efficiency of reinforcement learning. 

After studying the classical algorithm Deep Q-network of deep reinforcement learning and 
various variants in recent years. This paper conducted an analysis and found that some problems still 
exist in the algorithm. This paper mainly improves from the following three aspects. Firstly, Deep 
Q-network needs to output value for each action. If it is a continuous action, the output value is not 
desirable, and it needs to be improved so that it can be learned in a continuous action environment. 
Secondly, the importance of different samples varies greatly. The method of random sampling does 
not make full use of the differences between samples. Moreover, the structure of convolutional 
neural networks is limited, and there is a strong correlation between experiences. It is not good to use 
long-term experience. Thirdly, the training time of Deep Q-network is very long. This article uses 
asynchronous parallelism to reduce training time. Therefore, after considering the stability and 
convergence of the algorithm, this paper proposed an algorithm framework to solve the above these 
problems one by one. 

Firstly, the deterministic strategy is used to change the probability strategy and round update of 
policy gradient, and it is combined with Deep Q-network algorithm, so that Deep Q-network 
algorithm can be applied to continuous environment and then Temporal-Difference error (TD-error) 
is used to determine the priority based on the test result. Make the algorithm can learn more 
efficiently by using priority to determine the order of experience replay. Finally, consider using 
multiple agents to perform sampling learning independently, asynchronous parallelism, and improve 
the running speed of algorithm by optimizing the learned experience. Through the above 
improvements, the efficiency of the algorithm can be increased, the application range can be 

2019 2nd International Conference on Mechanical Engineering, Industrial Materials and Industrial Electronics (MEIMIE 2019)

Published by CSP © 2019 the Authors 472



  

 

 

expanded, and the performance of the algorithm can be improved under the premise of satisfying the 
effective requirements, ensuring stability and convergence. 

2. Related work 
The Deep Q-network combines the Q-learning algorithm with the neural network Convolutional 

neural network (CNN), and inputs the state and action of the Q-learning algorithm into the neural 
network to obtain the Q-value of the action in the current state. In order to avoid the use of forms in 
the Q-learning algorithm to store the state, and the action corresponding to the state, it is impossible 
to solve the problem of high order of magnitude state calculation under complex problems.  

Several variants of Deep Q-network algorithm produced by international researchers in recent 
years include Prioritized Experience Replay [2], Actor Critic, and A3C and so on. Prioritized 
Experience Replay, which changes the experience replay algorithm used by Deep Q-network, uses 
TD-error as a criterion to sample, learns more frequent conversions through replay, and expands the 
scope of application, making the algorithm equally efficient under special circumstances. The 
Actor-Critic [3] algorithm combines Deep Q-network with probability-based Policy Gradients 
algorithm, by using Policy Gradients as actors, and Deep Q-network as critic, letting actors select 
values first, then using critic to judge reward effects, and feedback affects actors. Update the 
parameters of the actor to make it more efficient. The Asynchronous Advantage Actor-Critic [4] 
algorithm is also based on Actor-Critic, which aims to solve the problem of Actor-Critic 
non-convergence. The difference is that it creates multiple parallel environments, allowing multiple 
agents with substructures to update the parameters in the main structure simultaneously in these 
parallel environments. The parameters of the main structure are not interfered with each other, and 
the parameter update of the main structure is interfered by the discontinuity of the sub-structure 
submission update, so the correlation of the update is reduced and the convergence is improved. 

In the comprehensive comparison of the variants of the Deep Q-network algorithm, it is found 
that although the current algorithm has a great improvement in efficiency and convergence compared 
with the original Deep Q-network, in the improvement of the original Deep Q-network algorithm, 
the above mentioned problems are not solved uniformly. Therefore, this paper proposes a unified and 
reasonable solution to optimize the efficiency and convergence of the Deep Q-network algorithm by 
extending the Deep Q-network algorithm, and expand its application range. 

3. Methods 
In this part, the details of the algorithm framework will be detailed, mainly to solve the above 

problems, and to integrate and unify each other, which are summarized into three aspects. First, 
make Deep Q-network applicable to continuous environment. Second, adjust the parameters by 
prioritizing the experience to speed up the processing speed of Deep Q-network for special problems. 
Third, improve the efficiency of the algorithm by asynchronous parallelism and collaborative 
operation. 

3.1 Continuous environment 
Before extending Deep Q-network to a continuous environment, explain the basic idea of Deep 

Q-network, and then optimize and improve it. 
Q-learning uses a form to store each state [5], and the Q-value represented by the action 

corresponding to the state can be applied well when the amount of data is small, but if the amount of 
data is large, a large amount of calculation will be generated. The efficiency is seriously reduced. 
The problems actually solved in reality are somewhat complicated, and the number of states may 
reach the order of magnitude that computer devices cannot test. 

So Deep Q-network introduced a neural network, using state and action as input to the neural 
network. After the neural network forwardly propagated, the Q-value of the action in the current 
state is obtained, so that it is not necessary to record the Q-value in the table, but directly use Q-value 

473



  

 

 

generated by the neural network. There is also a form of inputting only the state value, outputting the 
respective Q-values of all the actions, and directly selecting the action having the maximum value as 
the next action to be performed. Neural network training is to optimize a loss function loss function. 
It is therefore necessary to have samples and then use the gradient descent method to update the 
parameters of the neural network by backpropagation. The update of the Q-value depends on the 
original Q-value and Reward: 

                            (1) 

And because Deep Q-network takes this approach, it can only be applied in discrete environments. 
Deep Q-network gets the action value through the input of the state in a continuous environment, 
which is caused by the huge amount of data. Therefore, it is considered to improve it, retain the 
selection of the value, and increase the neural network that selects the action by probability on the 
basis of the original, and combine it to make it apply and continuous environment. 

First, construct a network that selects actions by probability, input the state to calculate the 
probability of the action, and thus extract the action, so that the action can be selected by probability 
in a continuous interval. It is not enough to have this step alone. In the next step, Deep Q-network 
algorithm is integrated into the evaluation of the action. Through feedback on the experimental 
results, the reward value is obtained, the previous network is affected, the parameters are updated, 
and the learning efficiency of the whole algorithm is gradually improved. However, in the 
experiment, since the algorithm includes two neural networks and runs in a continuous environment, 
the parameters are updated in real time, so that there is correlation before and after the parameter 
update, which causes the neural network to consider the problem one-sided. When the test data is 
large, the learning efficiency of neural networks is affected. Therefore, further improvements are 
needed, and priority experience replay is introduced. 

3.2 Priority experience replay 
Under normal circumstances, experience replay saves the samples obtained by the system 

exploration environment, and then samples the samples to update the model parameters. It is similar 
to extract sample to update model parameters when the environment database is established. 
According to the above problem, the sampling needs to be improved. The probability of lowering the 
correlation makes the result of the algorithm more close to the target data, so the priority experience 
is used for replay, and TD-error is used as the criterion for sampling, and more frequent conversion 
is learned through replay. 

The specific method is still to establish a sample database, but the change sampling method is not 
the original random sampling, but is based on the sample priority in Memory. This involves the 
determination of the sample priority value, how to prioritize. In this paper, TD-error is used, which is 
the difference value of reality of Q-value and estimate of Q-value to specify the degree of priority 
learning. If the TD-error is larger, there is still much room for improvement in the prediction 
accuracy, so the more the sample needs to be learned, the higher the priority. At the same time, 
according to the target results that need to be obtained, the priority level is adjusted to make it 
suitable for some experiments with low probability of success, and the probability of successful 
learning is expanded. Because TD-error has priority, it needs to be sampled according to priority in 
the experiment. If the sample is sorted every time, it will consume computational power. Therefore, 
the Sum Tree [6] structure is used, and it is not necessary to sort the samples every time. By 
prioritizing the experience replay, the algorithm can sample more efficiently, reduce the correlation, 
and can adjust the priority of the sample according to the specific problem, and get better learning 
speed in some experiments with low probability of success. The next step is to consider adding 
asynchronous parallelism to further improve the learning efficiency of the algorithm. 
  

474



  

 

 

3.3 Asynchronous parallelism 
The improved version of Deep Q-network mentioned above employs a prioritized experience 

replay mechanism to eliminate correlation between training data. However, experience replay 
requires a large amount of sample data to be accumulated first, and real-time interaction between the 
environment and the agent requires a lot of storage space and computing power, which reduces the 
efficiency of the algorithm to some extent. Therefore, it is considered to asynchronously parallel 
multiple agents, and the data is tested by running a multi-core processor of the type that is running at 
the same time, which saves running time and makes the algorithm more efficient. 

The specific method is to first establish multiple agents, that is, multiple replicas with secondary 
structures, and measure them in the parallel environment created, and update the parameters in the 
main structure in these parallel environments. The parameter update of the main structure is 
interfered by the discontinuity of the sub-structure submission update. The different states of the 
multiple agent tests are used to eliminate the correlation between the state transition samples 
generated during the training process. The main structure at this time brings together the learning 
experience of each substructure, affecting the parallel substructures, updating their parameters, and 
getting the latest methods to make them equally efficient. The bias-variance trade-off method is used 
to help quickly spread the newly observed rewards to the old state and establish reliable real-time 
feedback. The algorithm as a whole does not need to be continuously updated as before, and the 
continuity is eliminated by the parallel sub-body, and the memory can be updated without using the 
previous memory. 

4. Experimrnt 
The algorithm in this article is debugged under Tensorflow and OpenAI gym. Some games in the 

Atari 2600 domain are used to test the algorithm effect. The following are the experimental results. 

4.1 Continuous environment 
According to the above method, a network is selected by probability to select the action, 

combined with the Deep Q-network algorithm, and the probability of the action is calculated by 
inputting the state, so that the action can be selected by probability in a continuous interval. At the 
same time, the reward and punishment value is set as the evaluation of the action, and it is fed back 
to the network to update the parameters. Here, Gym Cartpole is used here to test the algorithm. 

Cartpole is a continuous motion test, we use algorithms to learn its game strategy to test the 
running effect in a continuous environment. 

 
Figure 1. The algorithm runs successfully on Cartpole. 

The Experiment tested 3000 rounds, and the learning effect was very good, and the improved 
Deep Q-network algorithm was extended to apply to the continuous environment. The following is a 
further experiment on the relevance of its data. 

4.2 Priority experience replay 
This paper implemented the natural DQN algorithm to make it suitable for continuous 

environments, then added priority experience playback, and TD-error calculation priorities.In order 

475



  

 

 

to meet the requirements of the method, we added the variable ISWeights, which is the 
Import-Sampling Weights, to restore the sampling probability distribution disturbed by the 
Prioritized replay. We simplified the calculation method and merged some steps.E.g: 

                          (2) 

                          (3) 

The corresponding memory used by DQN is also different, so the way of storing the transition 
changes. 

The game we tested was MountainCar, and below is a comparison of the two. 
It can be seen that dqn with experience playback requires less time to learn and has a faster 

learning speed. 

 
Figure 2. Compare the general Deep Q-network with the experimental results of Deep Q-network 

played back with prior experience. 

4.3 Asynchronous parallelism 
Further, in order to improve the operation efficiency, we asynchronously parallelize multiple 

agents and update the parameters in the main structure by running simultaneously. The parameters of 
the main structure are updated, which affects the parameter changes in the substructure. The 
deviation-variance trade-off method is used to establish reliable real-time feedback and improve the 
efficiency of the algorithm. 

In the experiment we built 4 workers and there is also a main program. The main program has 
global net and its parameters, each worker has a copy of global net named local net, and you can 
periodically push updates to global net, and then get a comprehensive update from global net. The 
experiment set the push and pull functions. If call pull in sync, the current worker will get the latest 
parameters from global net. If push the push in sync, it will upload the update to global net. The 
experiment use the Normal distribution to select the action, so while building the neural network, we 
output the mean and variance of the action, then put it into the Normal distribution to select the 
action. When calculating the loss, we also need to use the previously mentioned TD-error as the 
gradient. Ascent's orientation. 

Here is the game Cartpole, the following is the experimental effect. 

476



  

 

 

 
Figure 3. The experimental effect of asynchronous DQN is adopted. 

The learning result is judged by the reward of the moving average on the left side. It can be seen 
that the parallel algorithm has a good running efficiency and achieves the experimental purpose. 

5. Conclusion 
In this paper, we present an improved algorithm for Deep Q-network. Mainly improved three 

aspects. First, the use of the deterministic strategy of probability combined with the neural network 
of Deep Q-network, so that the Deep Q-network algorithm can be applied to the continuous 
environment. Second, the use of priority experience playback, using TD-error and test results to 
determine the sample Experience priority, adjust relevant parameters, reduce correlation. Third, 
through asynchronous parallel multiple agents, simultaneous independent sampling learning, interact 
with the main body to improve algorithm efficiency. The experiment has proved that the improved 
algorithm has found a better strategy, and the performance is much better than the initial Deep 
Q-network. It has achieved good results in the Atari 2600 field. In future, we will continue to expand 
the considerations, from three gradually increasing, expecting Deep Q-network algorithm to have 
better performance improvement. 

References 
[1] Mnih V, Kavukcuoglu K, Silver D, et al. Playing Atari with Deep Reinforcement Learning [J]. 
Computer Science, 2013. 
[2] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver.Prioritized experience replay. In: 
International Conference on Learning Representations. Puerto Rico, 2016. https://arxiv. org/pdf/ 
1511.05952.pdf 
[3] Peters J, Schaal S. Natural Actor-Critic [J]. Neurocomputing, 2008, 71 (7-9): 1180-1190. 
[4] Shixiang Gu, Timothy P. Lillicrap, Ilya Sutskever, Sergey Levine. Continuous deep Q-learning 
with model-based acceleration. In: Proceedings of the 32nd International Conference on Machine 
Learning, 2016, 2829-2838. 
[5] Watkins C J C H, Dayan P. Technical Note: Q-Learning [J]. Machine Learning, 1992, 8 (3-4): 
279-292. 
[6] Schaul T, Quan J, Antonoglou I, et al. Prioritized Experience Replay [J]. ComputerScience, 
2015. 

477

https://arxiv.org/pdf/1511.05952.pdf
https://arxiv.org/pdf/1511.05952.pdf
http://dblp.uni-trier.de/pers/hd/g/Gu:Shixiang
http://dblp.uni-trier.de/pers/hd/l/Lillicrap:Timothy_P=
http://dblp.uni-trier.de/pers/hd/s/Sutskever:Ilya
http://dblp.uni-trier.de/pers/hd/l/Levine:Sergey

	1. Introduction
	2. Related work
	3. Methods
	4. Experimrnt
	5. Conclusion
	References



